הרובוט הזעיר שמסוגל לנווט בסביבה פיזיולוגית וללכוד תאים פגומים

הכירו את המיקרו-רובוט ההיברידי: טכנולוגיה חדשנית זעירה בגודל 10 מיקרון (גודל של תא ביולוגי)

חוקרים באוניברסיטת תל אביב פיתחו מיקרו-רובוט היברידי בגודל תא ביולוגי בודד (כ-10 מיקרון), שניתן לשליטה ולניווט באמצעות שני מנגנונים שונים – חשמלי ומגנטי. המיקרו-רובוט מסוגל לנווט בין התאים השונים בדגימה ביולוגית, להבחין בין סוגי תאים שונים ואף לזהות האם מדובר בתא בריא או תא גוסס, ואז להעמיס עליו את התא הרצוי ולשאת אותו להמשך אנליזה, החדרת תרופה או גן או לבודדו לצורך ריצוף גנטי. לדברי החוקרים, הפיתוח עשוי לסייע בקידום מחקרים בתחום החשוב של 'אנליזת תא בודד' (single cell analysis), וכן באבחון רפואי, בהובלת תרופות, בכירורגיה ובשמירה על הסביבה.

 

הטכנולוגיה החדשנית פותחה בהובלת פרופ' גלעד יוסיפון מבית הספר להנדסה מכנית ומהמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב, ובהשתתפות הפוסט-דוקטורנטית Dr. Yue Wu מאוניברסיטת תל אביב, וכן הסטודנטית סיון יעקב והפוסט-דוקטורנט Dr. Afu Fu מהטכניון. המאמר פורסם בכתב העת Advanced Science.

 

בהשראת מיקרו-שחיינים ביולוגיים

פרופ' גלעד יוסיפון מסביר כי מיקרו-רובוטים הם חלקיקים סינטטיים זעירים בגודל של תא ביולוגי, שיכולים לנוע ממקום למקום ולבצע פעולות שונות (לדוגמה: איסוף יעיל של מטענים סינטטיים או ביולוגיים) באופן אוטונומי על פי תכנון מראש, או באמצעות שליטה מבחוץ בידי מפעיל או מערכת בקרה. לדבריו, יכולת התנועה העצמית של המיקרו-רובוטים (הקרויים לפעמים גם מיקרו-מנועים וחלקיקים אקטיביים), הונדסה בהשראת מיקרו-שחיינים ביולוגיים, דוגמת חיידקים ותאי זרע. מדובר בתחום חדשני שמתפתח במהירות, עם מגוון רחב של שימושים בתחומים כמו רפואה וסביבה, וגם ככלי מחקרי.

 

"הכוונה בעתיד היא לפתח מיקרו-רובוטים שיפעלו גם בתוך הגוף – למשל כנשאי תרופות יעילים שניתן לנווט אותם למטרה באופן מדויק."

 

במסגרת הפיתוח החדשני, החוקרים השתמשו במיקרו-רובוט כדי ללכוד תא דם, תא סרטני או חיידק בודד, והראו כי הוא מסוגל להבחין בין תאים בעלי רמות חיות שונות – תא בריא, תא שנפגע על ידי תרופה, או תא שמת או גוסס בתהליך 'התאבדות' טבעי (הבחנה כזאת עשויה להיות משמעותית לדוגמה בעת פיתוח תרופות נגד סרטן).

 

כמו כן, לאחר שזיהה את התא המבוקש, הצליח המיקרו-רובוט גם ללכוד אותו ולהובילו להמשך טיפול ואבחון הפגיעה בתא. חידוש חשוב נוסף בטכנולוגיה הוא זיהוי תא המטרה ללא צורך בתיוגו: המיקרו-רובוט מזהה את סוג התא ואת מצבו (דוגמת רמת חיות) באמצעות מנגנון חישה מובנה המבוסס על התכונות החשמליות הייחודיות של התא.

 

 

פרופ' יוספון: "הפיתוח החדש שלנו מוסיף נדבך חשוב לטכנולוגיה זו, בשני היבטים עיקריים: הנעה וניווט היברידיים על ידי שני מנגנונים שונים – חשמלי ומגנטי, לצד יכולת משופרת לזהות וללכוד תא בודד ללא צורך בתיוג, לצורך בדיקה מקומית או שליפה והובלה למכשור חיצוני. מחקר זה בוצע על דגימות ביולוגיות במעבדה, אך הכוונה בעתיד היא לפתח מיקרו-רובוטים שיפעלו גם בתוך הגוף – למשל כנשאי תרופות יעילים שניתן לנווט אותם למטרה באופן מדויק."

 

החוקרים מסבירים שלמנגנון ההנעה ההיברידי של המיקרו-רובוט יש חשיבות מיוחדת בסביבות פיזיולוגיות, כמו למשל ביופסיה נוזלית. "המיקרו-רובוטים שפעלו עד היום בהתבסס על מנגנון חשמלי, לא היו יעילים בסביבות מסוימות המאופיינות במוליכות חשמלית גבוהה יחסית, כמו למשל בסביבה פיזיולוגית, בה ההנעה החשמלית  פחות אפקטיבית. כאן יכול להיכנס לפעולה המנגנון המגנטי המשלים, שהוא יעיל מאוד ללא קשר להולכה חשמלית."

 

פרופ' יוסיפון מסכם: "במחקר שלנו פיתחנו מיקרו-רובוט חדשני, בעל יכולות חשובות שמוסיפות נדבך משמעותי לתחום: הנעה וניווט היברידיים באמצעות שילוב של שדה חשמלי ומגנטי, וכן יכולת לזהות, ללכוד, ולהוביל תא בודד ממקום למקום בסביבה פיזיולוגית. ליכולות אלה יש משמעות רבה עבור מגוון רחב של יישומים וגם למחקר. בין היתר עשויה הטכנולוגיה לתמוך בתחומים הבאים: אבחון רפואי ברמת התא הבודד, החדרת תרופות או גנים לתאים, עריכה גנטית, נשיאת תרופות ליעדן בתוך הגוף, ניקוי הסביבה מחלקיקים מזהמים, פיתוח תרופות, וטכנולוגיית 'מעבדה על חלקיק' שנועדה לבצע אבחון במקומות הנגישים רק למיקרו-חלקיקים."

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>